# Ethane Hydrogenolysis and Hydrogen Chemisorption over Niobia-Promoted Rhodium Catalysts: A New Phase by a Strong Rhodium–Niobia Interaction

Z. HU, H. NAKAMURA, K. KUNIMORI,<sup>1</sup> H. ASANO, AND T. UCHIJIMA<sup>1</sup>

Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Received January 4, 1988; revised March 14, 1988

Niobia-promoted Rh/SiO<sub>2</sub> catalysts, containing niobia (Nb<sub>2</sub>O<sub>5</sub>) deposited onto Rh/SiO<sub>2</sub> catalysts, exhibited chemical behavior characteristic of strong metal-support interaction, the Rh-Nb<sub>2</sub>O<sub>5</sub> interaction being as strong as that in the Rh/Nb<sub>2</sub>O<sub>5</sub> system. In a typical case, after the high-temperature reduction at 773 K, the H<sub>2</sub> chemisorption ability diminished almost to zero and the catalytic activity for ethane hydrogenolysis decreased by about seven orders of magnitude, compared with the low-temperature reduction (LTR) at 373 K. The phenomenon is reversed after the oxidation in O<sub>2</sub> at 673 K followed by LTR. The extent of Rh-Nb<sub>2</sub>O<sub>5</sub> interaction was sensitive to preparation variables such as the amount of Nb<sub>2</sub>O<sub>5</sub> deposited and preparation method. In particular, the extent of interaction was increased significantly by calcining Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts in air at high temperatures (973 K). An X-ray diffraction study suggested formation of a new phase (RbNbO<sub>4</sub>) by the calcination treatment at 973 K. Temperature-programmed reduction results showed that the reduction peaks shifted to the higher temperature side as the degree of the Rh-Nb<sub>2</sub>O<sub>5</sub> interaction in creased. A model for the metal-oxide interaction in the present catalyst system is discussed in terms of the formation of a surface RhNbO<sub>4</sub> compound and the decoration of the Rh surface with a niobia species (NbO<sub>x</sub>). (1) 1988 Academic Press, Inc.

#### INTRODUCTION

The work of Tauster and co-workers (1, 2) has stimulated numerous studies of strong metal-support interaction (SMSI) effects on the chemisorption and catalytic properties of metal catalysts supported on TiO<sub>2</sub> and reducible oxides. Recently, a model involving migration of reduced species of the support onto metal particles which results in a geometric effect (3, 4) has been proposed to interpret the SMSI phenomena, and several studies of model catalysts have provided direct physical evidences for the covering of the metal surface with an oxide species (e.g., TiO<sub>x</sub>) in various catalysts ("decoration model") (5-9).

SMSI oxides (TiO<sub>2</sub>, MnO, V<sub>2</sub>O<sub>3</sub>, Nb<sub>2</sub>O<sub>5</sub>, etc.) have also been used as a promoter in metal catalysts supported on non-SMSI oxides (e.g., SiO<sub>2</sub>). The promotion effects of

TiO<sub>2</sub>, MnO, Nb<sub>2</sub>O<sub>5</sub>, etc., have been reported in CO hydrogenation, etc., on Rh/ SiO<sub>2</sub> (10–13) and Pd/SiO<sub>2</sub> (14, 15) catalysts. Since the catalytic properties of the catalysts are modified drastically by the oxide promoter, the interaction between metal and SMSI oxide is of considerable interest. Motivated by the similarity between SMSI (the decoration model) and the metal-oxide additive effects, some attempts have been made to study SMSI behavior using a SMSI oxide deposited onto a non-SMSI oxide (SiO<sub>2</sub> or Al<sub>2</sub>O<sub>3</sub>) as catalyst support (16–19). However, the interaction was not as strong as that exerted by the bulk SMSI oxides.

We have recently shown that a niobiapromoted Rh catalyst, containing niobia  $(Nb_2O_5)$  deposited onto a Rh/SiO<sub>2</sub> catalyst, exhibited SMSI behavior in ethane hydrogenolysis studies. The Rh-Nb<sub>2</sub>O<sub>5</sub> interaction was as strong as that in the Rh/Nb<sub>2</sub>O<sub>5</sub> system (20, 21); i.e., the catalytic activity decreased drastically with increasing cata-

<sup>&</sup>lt;sup>1</sup> To whom correspondence should be addressed.

lyst reduction temperature (e.g., depression of about seven orders of magnitude after high-temperature reduction (HTR) at 773 K compared with low-temperature reduction (LTR) at 373 K). The acronym "SMSI behavior" is used here for the cases which meet the definition in the original observations (1, 2); i.e., a drastic suppression of chemisorption ability and/or catalytic activity after high-temperature reduction and its recovery after high-temperature O<sub>2</sub> treatment followed by low-temperature reduction (16-18). Although the SMSI behavior has been amply confirmed in their original catalyst system (metal/TiO<sub>2</sub>, metal/  $Nb_2O_5$ , etc.), new catalyst systems including Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts have been observed to exhibit equivalent behavior (16-20).

In this paper, the results of our recent work with the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts will be presented. Hydrogen chemisorption and ethane hydrogenolysis reaction were used as chemical probes for the degree of the Rh–Nb<sub>2</sub>O<sub>5</sub> interaction, and the catalysts were characterized by temperature-programmed reduction (TPR) and X-ray diffraction (XRD) measurements. During the course of the study, we have found that the extent of the metal-oxide interaction was increased by the calcination of the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts in air at a high temperature (22). Therefore, in the present paper we focus our attention on the effect of the calcination treatment. The results of  $H_2$  chemisorption and ethane hydrogenolysis reaction will first be described, followed by the characterization with TPR and XRD and a discussion about a possible model of metal-oxide interaction in the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts.

#### **EXPERIMENTAL**

### Preparation of Catalysts

A 0.5 wt% Rh/SiO<sub>2</sub> catalyst (JRC-SIO-3-0.5Rh) was provided as Japan Reference Catalyst (JRC) (23). A 5.0 wt% Rh/SiO<sub>2</sub> catalyst was prepared by impregnating the

SiO<sub>2</sub> support (JRC-SIO-3, BET surface area of 186 m<sup>2</sup>/g) with an aqueous solution of RhCl<sub>3</sub> to incipient wetness. The impregnated sample was dried at 393 K overnight and reduced in H<sub>2</sub> flow at 773 K for 1 h.

The Nb<sub>2</sub>O<sub>5</sub>-promoted 0.5 wt% Rh/SiO<sub>2</sub> catalysts were prepared by the incipient wetness impregnation of 0.5 wt% Rh/SiO<sub>2</sub> catalyst, which had been calcined in air at 773 K, with an aqueous solution of  $(NH_4)_3(NbO(C_2O_4)_3)$ , and then the catalyst was dried at 393 K overnight and calcined at 773 K for 1 h to decompose the niobia precursor. The Nb<sub>2</sub>O<sub>5</sub> loading was about 0.57, 5.7, and 6.8 wt%, corresponding to Nb/Rh atomic ratios of 0.88, 9.3, and 11.4, respectively. This series of catalysts is designated catalyst A. The Nb<sub>2</sub>O<sub>5</sub>-promoted 5.0 wt% Rh/SiO<sub>2</sub> (Nb/Rh = 3.1) was obtained by impregnation of 5.0 wt% Rh/SiO<sub>2</sub> catalyst with a solution of NbCl<sub>5</sub> dissolved in ethanol, followed by degassing in vacuo for 6 h to remove the ethanol solvent and calcining in air at 773 K for 1 h to decompose the niobia precursor. This catalyst was designated catalyst B.

In another preparation method, the SiO<sub>2</sub> support (JRC-SIO-3) was impregnated with a solution of  $(NH_4)_3(NbO(C_2O_4)_3)$  and dried at 393 K overnight. The resulting support (5.7 wt% Nb<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub>) was calcined at 973 K for 3 h to sinter the niobia to a larger crystalline. The 0.5 wt% Rh/Nb<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub> catalyst (designated catalyst C) was obtained from this support by its impregnation with an aqueous RhCl<sub>3</sub> solution and dried at 393 K overnight followed by reduction in H<sub>2</sub> flow at 773 K for 1 h.

### Hydrogen Chemisorption

The volumetric adsorption of  $H_2$  was studied by a conventional glass vacuum system (24), base pressure of  $10^{-5}$  to  $10^{-6}$ Torr (1 Torr = 133.3 N m<sup>-2</sup>) being attained by an oil diffusion pump with a liquid nitrogen trap. Reduced catalyst samples of 0.2 to 0.3 g were placed in a Pyrex tube. The amounts of gas adsorbed on the catalysts were determined from pressure mea-

surements with an MKS Baratron pressure gauge. Dead volumes were calibrated using helium gas. The isotherms were not studied in detail, but the adsorption measurements were performed at room temperature and the lower equilibrium pressures (about 8) Torr). The adsorption of  $H_2$  at room temperature was instantaneous. However, it was followed by a slow gas uptake, the rate of which became negligible after 1 h. Therefore, typically, the amount of the uptake was measured at 1 h after the admission of  $H_2$  gas. The catalyst was pretreated for 1 h in  $O_2$  flow at 673 K, followed by reduction at the desired temperature in H<sub>2</sub> flow purified through a zeolite bed at liquid nitrogen temperature, and then evacuated in vacuo at the catalyst reduction temperature before the measurement of  $H_2$  adsorption. The amount of H<sub>2</sub> chemisorption was expressed in terms of H/Rh (the number of chemisorbed H atoms/the total number of Rh atoms in the catalyst).

# Ethane Hydrogenolysis

The catalytic activity measurements for the ethane hydrogenolysis reaction were performed in a microcatalytic pulse reactor (21). The catalyst (1.0 g) was placed in a Pyrex tube connected to stainless-steel piping by swagelok fittings. Purified He gas was used as the carrier gas (flow rate, 70  $cm^3/min$ ) and a pulse (1  $cm^3$ ) of a mixture gas (C<sub>2</sub>H<sub>6</sub>, 2.7%; H<sub>2</sub>, 31.8%; He balance) was injected by a jacketed switching valve purged with He. The impurity level of the carrier gas was less than 0.05 ppm in  $O_2$ . Analysis was performed by an on-line gas chromatograph. The reaction rate was calculated from the conversion and a residence time (assumed to be the catalyst bed volume in a ratio to the carrier flow rate) (25) and expressed in molecules converted per total Rh atoms per second.

### Temperature-Programmed Reduction

The TPR measurements were performed in a flow system with the catalyst (0.25 g) placed in a microreactor connected to a

### TABLE 1

### The Results of H<sub>2</sub> Adsorption, XRD, and TEM for the Nb<sub>2</sub>O<sub>5</sub>-Promoted and Unpromoted Rh/SiO<sub>2</sub> Catalysts

| Catalyst                 | Nb/Rh <sup>a</sup> | H <sub>2</sub> adsorption <sup>b</sup><br>(H/Rh) | Rh particle size (nm) |          |  |
|--------------------------|--------------------|--------------------------------------------------|-----------------------|----------|--|
|                          |                    |                                                  | From XRD              | From TEM |  |
| 0.5% Rh/SiO <sub>2</sub> | 0.0                | 0.35                                             |                       | 3.2      |  |
| Catalyst A               | 9.3                | 0.25                                             | _                     |          |  |
| 5.0% Rh/SiO2             | 0.0                | 0.20                                             | 5.5                   | 4.5      |  |
| Catalyst B               | 3.1                | 0.11                                             | 5.2                   | -        |  |

<sup>a</sup> The atomic ratio of Nb to Rh.

 $^b$  The total H<sub>2</sub> uptake after the H<sub>2</sub> reduction at 373 K. For details, see Figs. 1 and 2.

quadrupole mass spectrometer (QMS, ANELVA TE-150). After the catalyst was calcined in O<sub>2</sub> flow (30 cm<sup>3</sup>/min) at 673 K for 1 h, it was purged with He gas up to 773 K to remove any possible oxygen adsorbate over the support. The sample was subsequently cooled in He to room temperature, then a mixture of 1120 ppm H<sub>2</sub> in He was passed through the catalyst bed at 30 cm<sup>3</sup>/min, and the H<sub>2</sub> consumption was monitored as the catalyst temperature was raised at 5 or 20 K/min up to 773 K.

#### TEM and XRD

The transmission electron microscopy (TEM) measurements were performed with a JEOL JEM 120CX instrument. TEM samples were prepared by placing a drop of a suspension of finely meshed particles in toluene on a copper grid (26). An X-ray diffractometer (Rigaku Co., Ltd.) equipped with a graphite monochromator for CuK $\alpha$  radiation (40 kV, 30 mA) was used for the X-ray diffraction studies. The mean Rh particle size was calculated from the line-broadening measurement, as described elsewhere (26).

### RESULTS

## Rh Dispersion

The Rh particle sizes of the catalysts based on TEM and XRD studies are given in Table 1. For the unpromoted  $Rh/SiO_2$ catalysts, the Rh dispersions (the H/Rh



FIG. 1. Effect of catalyst reduction temperature on the capacities of  $H_2$  adsorption for the Nb<sub>2</sub>O<sub>5</sub>-promoted 0.5% Rh/SiO<sub>2</sub> catalysts. (a) Rh/SiO<sub>2</sub>, 0.5%; (b) catalyst A (Nb/Rh = 0.9); (c) the catalyst A (Nb/Rh = 9.3).

values) from  $H_2$  adsorption measurements are in reasonable agreement with those determined by TEM and XRD. As indicated by the XRD results in Table 1, no change in the mean Rh particle size was observed between the unpromoted 5.0 wt% Rh/SiO<sub>2</sub> and the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> (catalyst B). However, the H/Rh values of the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts (A and B) were significantly less than those of the corresponding unpromoted Rh/SiO<sub>2</sub> catalysts, respectively. This result suggests that the Rh surface in the promoted catalysts was partially covered with the Nb<sub>2</sub>O<sub>5</sub> promoter even after the low-temperature reduction at 373 K.

### $H_2$ Chemisorption

Figure 1 shows the variation in the  $H_2$ uptake for the unpromoted and Nb<sub>2</sub>O<sub>5</sub>-promoted 0.5% Rh/SiO<sub>2</sub> catalysts as a function of catalyst reduction temperature. For the 0.5% Rh/SiO<sub>2</sub> catalyst, a small decrease in the H/Rh value was observed after the high-temperature reduction at 773 K, but the capacity of H<sub>2</sub> adsorption was suppressed much more significantly for the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> (catalyst A). The

effect was more drastic for the catalyst A with an Nb/Rh value of 9.3 than that with a value of 0.9. In the former case, the H/Rh value diminished to almost zero after hightemperature reduction at 773 K. The  $H_2$ adsorption data for the unpromoted 5.0 wt% Rh/SiO<sub>2</sub> and the Nb<sub>2</sub>O<sub>5</sub>-promoted 5.0% Rh/SiO<sub>2</sub> (catalyst B) are given in Fig. 2. For the 5.0% Rh/SiO<sub>2</sub> catalyst, the H/Rh value was independent of catalyst reduction temperature. In catalyst B, however, substantial suppression of H<sub>2</sub> adsorption ability was observed with increasing catalyst reduction temperature. The H/Rh value diminished almost to zero even after reduction at 573 K.

The H<sub>2</sub> adsorption ability for catalyst C, which was prepared from the 5.7 wt% Nb<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub> calcined at 973 K, is shown in Fig. 3 as a function of catalyst reduction temperature. When catalyst C was reduced at temperatures lower than 573 K, the H/Rh value decreased with increasing catalyst reduction temperature, but no further decrease in the H/Rh value was shown at the higher temperatures up to 773 K. The effect of the calcination treatment at high temperatures (973 K) is also shown in Fig. 3. After catalyst C was calcined in air at 973



FIG. 2. Effect of catalyst reduction temperature on the capacities of  $H_2$  adsorption for the Nb<sub>2</sub>O<sub>5</sub>-promoted 5.0% Rh/SiO<sub>2</sub> catalysts. (a) Rh/SiO<sub>2</sub>, 5.0%; (b) catalyst B.



FIG. 3. Effect of catalyst reduction temperature on the capacity of  $H_2$  adsorption for catalyst C. (a) Catalyst C calcined at 773 K; (b) catalyst C calcined at 973 K.

K, more severe suppression in the uptake of  $H_2$  was observed with increasing catalyst reduction temperature. The H/Rh value diminished to zero after reduction at 673 K.

### Ethane Hydrogenolysis

Figure 4 shows the Arrhenius plots of ethane hydrogenolysis activity for catalyst A (Nb/Rh = 11.4). The catalytic activity decreased drastically; i.e., the reaction temperature to gain observable conversion range (3 to 10%) increased with increasing



FIG. 4. Comparison of the ethane hydrogenolysis activities for catalyst A (Nb/Rh = 11.4) reduced at different temperatures. Reduction at (a) 473 K, (b) 773 K, (c) 473 K, (d) 573 K, and (e) 673 K. Before each reduction treatment, the catalyst was pretreated in  $O_2$  at 673 K.

catalyst reduction temperature. For example, to get the rate of 0.01 molecule/(total Rh atom sec), the reaction temperature was 446 K for the catalyst reduced at 473 K (curve a), while the reaction temperature of 763 K was needed after the catalyst was reduced at 773 K (curve b). It should be noted that the phenomenon was reversible; i.e., the catalytic activity was restored, if the catalyst was treated in O<sub>2</sub> at 673 K followed by the low-temperature reduction (see curve c in Fig. 4). Similar reversible phenomena were also observed in the ethane hydrogenolysis studies on catalysts B and C. The activation energy appeared to be almost constant (35 kcal/mol) among the data at different catalyst reduction temperatures.

Figure 5 shows the catalytic activity for ethane hydrogenolysis as a function of catalyst reduction temperature. The activities were calculated for 435 K from Arrhenius plots simply to allow a ready comparison among different reduction temperatures. For catalyst A (Nb/Rh = 9.3, 11.4), the catalytic activity decreased by about seven orders of magnitude after high-temperature reduction at 773 K, relative to the low-temperature reduction at 373 K. The suppres-



FIG. 5. Effect of catalyst reduction temperature on the catalytic activity for ethane hydrogenolysis. ( $\Box$ ) Rh/SiO<sub>2</sub>, 0.5%; ( $\blacktriangle$ ) physical mixing of 0.5% Rh/SiO<sub>2</sub> with Nb<sub>2</sub>O<sub>5</sub> oxide; ( $\triangle$ ) catalyst A (Nb/Rh = 0.9); ( $\bigcirc$ ) catalyst A (Nb/Rh = 9.3); ( $\bigcirc$ ) catalyst A (Nb/Rh = 11.4).



FIG. 6. Effect of calcination at high temperatures on the catalytic activities for ethane hydrogenolysis on the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts. (a) Catalyst C calcined at 773 K; (b) catalyst B calcined at 773 K; (c) catalyst B calcined at 973 K; (d) catalyst C calcined at 973 K.

sion extent is comparable to that in the 0.5% Rh/Nb<sub>2</sub>O<sub>5</sub> catalyst (21). For the catalyst A with the lower loading of Nb<sub>2</sub>O<sub>5</sub> (Nb/Rh = 0.9), the effect of catalyst reduction temperature on the catalytic activity was less pronounced. The observed decrease in the activity of the Nb<sub>2</sub>O<sub>5</sub>-promoted catalysts is due to the Nb<sub>2</sub>O<sub>5</sub> promoter, because no drastic change of the catalytic activity was observed in the unpromoted 0.5 wt% Rh/SiO<sub>2</sub> catalyst. As also shown in Fig. 5, its physical mixing with the Nb<sub>2</sub>O<sub>5</sub> oxide was insufficient to cause the SMSI behavior.

Figure 6 shows the catalytic activity for ethane hydrogenolysis over catalysts B and C as a function of catalyst reduction temperature. For catalyst C, the catalytic activity after HTR was suppressed only by 1.5 orders of magnitude compared with that after LTR at 373 K. The effect of the calcination treatment at the high temperature was observed on the catalytic behavior. The calcination of catalyst C in air at 973 K caused the drastic decrease in the catalytic activity with increasing catalyst reduction temperature (depression of the activity of about 6 orders of magnitude after HTR relative to LTR at 373 K). For catalyst B, the catalytic activity decreased by about 4 orders of magnitude after HTR at 773 K relative to LTR at 373 K. The effect of the calcination was also observed in catalyst B (see Fig. 6). After catalyst B was calcined in air at 973 K, more significant suppression was observed; i.e., the catalytic activity decreased by ca. 7 orders of magnitude after HTR at 773 K.

### **Temperature-Programmed Reduction**

TPR experiments were performed to characterize the reducibility of the unpromoted and Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts. As shown in Fig. 7, the TPR spectrum of the 0.5% Rh/SiO<sub>2</sub> catalyst consists of a sharp peak centered at 350 K with a small tail up to 423 K. For the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts, however, the H<sub>2</sub> consumption was observed in a wide range of temperature up to 773 K during the TPR. The TPR spectrum of catalyst A with the Nb/Rh value of 0.9 is much more complex than that of the 0.5 wt% Rh/SiO<sub>2</sub> catalyst. The spectrum contains reduction peaks at



FIG. 7. TPR spectra of the Nb<sub>2</sub>O<sub>3</sub>-promoted 0.5% Rh/SiO<sub>2</sub> catalysts. (a) Catalyst A (Nb/Rh = 9.3); (b) catalyst A (Nb/Rh = 0.9); (c) 0.5% Rh/SiO<sub>2</sub> catalyst. Catalyst temperature was ramped at 5 K/min.



FIG. 8. TPR spectra of catalyst A (Nb/Rh = 9.3) after different pretreatments. (1) Calcined in  $O_2$  at 673 K, then flushed in He up to 773 K; (2) after (1), the catalyst was reduced in H<sub>2</sub> at 373 K; (3) after (1), the catalyst was reduced at 373 K, then flushed in He up to 773 K; (4) after (1), the catalyst was reduced at 473 K. Catalyst temperature was ramped at 20 K/min.

the higher-temperature side, but the peak centered at 350 K is still the main one. In the catalyst A with the Nb/Rh value of 9.3, all of the reduction peaks have shifted to the higher-temperature side in comparison with those in the 0.5% Rh/SiO<sub>2</sub> catalyst. It is noted that no H<sub>2</sub> consumption was observed up to 773 K during the TPR of the  $5.7 \text{ wt}\% \text{ Nb}_2\text{O}_5/\text{SiO}_2$  support.

To characterize the interaction between Rh and Nb<sub>2</sub>O<sub>5</sub> in more detail, the TPR spectra of catalyst A (Nb/Rh = 9.3) after various pretreatments were studied as shown in Fig. 8 (20 K/min). The TPR spectrum of the catalyst treated in  $O_2$  at 673 K (TPR 1) may be divided roughly into two parts: the H<sub>2</sub> consumptions at the lowerand higher-temperature sides. For the catalyst reduced in H<sub>2</sub> at 373 K, only the peak of  $P_H$  (the reduction peak at the highertemperature side) was observed (see TPR 2) and no significant effect of the He treatment at 773 K was observed (TPR 3). After the H<sub>2</sub> reduction at 473 K, the peak of  $P_{\rm H}$ was still observed during the TPR measurement (see TPR 4), although the amount of the H<sub>2</sub> consumption decreased substantially. These results suggest that the peak at the lower-temperature side is due to the reduction of Rh oxide, and the peak at the higher-temperature side ( $P_H$ ) corresponds to a strongly interacting part between Rh and Nb<sub>2</sub>O<sub>5</sub>.

Figures 9 and 10 show the effect of the calcination treatment at high temperatures on TPR spectra. The TPR spectra of catalyst B (Fig. 9) showed that the reduction peaks shifted to higher temperatures by increasing the catalyst calcination temperature (from 773 to 973 and 1173 K). As shown in Fig. 10a, the TPR spectrum of catalyst C after the  $O_2$  treatment at 673 K exhibits a broad peak at ca. 400 K with a tail extending to the higher temperature. After catalyst C was calcined in air at 973 K, the contribution of the reduction peaks at the higher temperatures increased remarkably, as shown in Fig. 10b. Following the measurement (b), the TPR spectrum was measured after the  $O_2$  treatment at 673 K, as given in Fig. 10c. The TPR spectrum (c) still exhibits the reduction peaks at the higher temperatures, although the peak at around 730 K diminished substantially. The comparison of spectrum (c) with (a) in Fig. 10 revealed that a more strongly interacting



FIG. 9. Effect of calcination temperature on the TPR spectra of the catalyst B. (a) Calcined in  $O_2$  at 773 K; (b) calcined in air at 973 K; (c) calcined in air at 1173 K. Catalyst temperature was ramped at 5 K/min in the flow of 1.05% H<sub>2</sub>/He mixture.



FIG. 10. Effect of calcination temperature on the TPR spectra of catalyst C. (a) Calcined in  $O_2$  at 673 K; (b) calcined in air at 973 K; (c) after (2), the catalyst was calcined in  $O_2$  at 673 K. Catalyst temperature was ramped at 5 K/min.

phase between Rh and  $Nb_2O_5$  was produced by the calcination of catalyst C in air at 973 K.

# X-Ray Diffraction

The X-ray diffraction patterns of the unpromoted and the Nb<sub>2</sub>O<sub>5</sub>-promoted 5.0 wt% Rh/SiO<sub>2</sub> (catalyst B) are given in Fig. 11. The XRD pattern of the 5.0 wt% Rh/SiO<sub>2</sub> catalyst calcined at 973 K (No. 5) contains only the diffraction peaks of Rh<sub>2</sub>O<sub>3</sub>, and the peaks of Rh metal appeared after the catalyst was reduced in  $H_2$  at 373 K (No. 6). However, the diffraction patterns of catalyst B calcined at 973 K are more complex. In addition to those peaks corresponding to the Nb<sub>2</sub>O<sub>5</sub> phase, new diffraction peaks ( $2\theta$ = 26.8, 35.3, 53.1) are observed (No. 1 in Fig. 11). As will be discussed later, these new peaks may be attributed to the diffraction of the complex oxide of RhNbO<sub>4</sub>. It should be noted that only a small diffraction peak of the Rh<sub>2</sub>O<sub>3</sub> phase was observed after the calcination at 973 K (No. 1). This may be interpreted as a consequence of the reaction between Rh<sub>2</sub>O<sub>3</sub> and Nb<sub>2</sub>O<sub>5</sub> to form the new phase (RhNbO<sub>4</sub>). After the catalyst was reduced at 373 K, the new peaks did not exhibit any reduction (No. 2), but these peaks disappeared after HTR at 773 K with the appearance of Rh metal (No. 3). For the catalyst calcined at 673 K after the new phase had been once reduced to Rh, no significant peaks corresponding to RhNbO<sub>4</sub> were observed (No. 4). A higher calcination temperature is needed for the formation of the new phase which can be detected by the X-ray diffraction. Moreover, it may be noted that the calcination at 673 K was insufficient to produce the Rh<sub>2</sub>O<sub>3</sub> crystal which is detectable by the XRD technique.

The XRD analyses were also performed for the 5.0 wt% Rh/SiO<sub>2</sub> and catalyst B calcined at 773 K. For both catalysts, only the Rh<sub>2</sub>O<sub>3</sub> phase was observed. No peaks due to the Nb<sub>2</sub>O<sub>5</sub> phase were observed for catalyst B calcined at 773 K. This means that the Nb<sub>2</sub>O<sub>5</sub> promoter is well dispersed or it is amorphous.

### DISCUSSION

Catalyst A (Nb/Rh = 9.3) contains 5.7 wt% Nb<sub>2</sub>O<sub>5</sub> as a promoter. Since no diffraction peaks corresponding to the Nb<sub>2</sub>O<sub>5</sub>



FIG. 11. X-ray diffraction patterns of the unpromoted and Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> (catalyst B) catalysts. (1) Catalyst B calcined in air at 973 K; (2) after (1), the catalyst was treated in H<sub>2</sub> at 373 K; (3) after (1), the catalyst was reduced in H<sub>2</sub> at 773 K; (4) after (3), the catalyst was treated in O<sub>2</sub> at 673 K; (5) the 5.0% Rh/SiO<sub>2</sub> catalyst calcined in air at 973 K; (6) after (5), the 5.0% Rh/SiO<sub>2</sub> catalyst was reduced in H<sub>2</sub> at 373 K.

phase were observed, the Nb<sub>2</sub>O<sub>5</sub> promoter may be either well dispersed over the SiO<sub>2</sub> surface or amorphous. According to the assumption that the Nb<sub>2</sub>O<sub>5</sub> promoter is dispersed monolayerly and that each NbO<sub>25</sub> unit mesh in the niobia layer occupies a surface area of 16  $Å^2$  (17), about 22% of the  $SiO_2$  surface would be covered by the monolayer niobia in catalyst A (Nb/Rh = 9.3). On the basis of the same assumption, the monolayer niobia coverage of the SiO<sub>2</sub> surface would be 2 and 70% for the catalyst A with an Nb/Rh value of 0.9 and catalyst B, respectively. The results of  $H_2$  chemisorption and Rh dispersion in Table 1 suggest that a part of the deposited  $Nb_2O_5$ may be present on the Rh surface. The  $Nb_2O_5$  promoter on the Rh surface may play an important role in severe suppression of both the  $H_2$  chemisorption capacity and the ethane hydrogenolysis activity after HTR. However, it should also be noted that a large part of the deposited Nb<sub>2</sub>O<sub>5</sub> should be on the  $SiO_2$  support, since the Nb/Rh ratio was much greater than 1 for the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts which exhibited the SMSI behavior.

The observed SMSI behavior in the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts is very similar to that in the Rh/Nb<sub>2</sub>O<sub>5</sub> catalysts (21). The activity change of the ethane hydrogenolysis reaction with reduction temperature is very similar between both the Rh/Nb<sub>2</sub>O<sub>5</sub> and the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/  $SiO_2$  systems, and the activation energy appeared to be almost constant among the data at different catalyst reduction temperatures. Similar results have also been reported on the Rh/TiO<sub>2</sub> catalysts (27). Because of the parallel behavior between the present system and the  $Rh/Nb_2O_5$  (21) system, the severe suppression in the  $H_2$ chemisorption capacity and the catalytic activity of the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts after HTR may also be caused by the blockage of the surface Rh atoms with  $NbO_x$  species formed from the  $Nb_2O_5$  promoter during the high-temperature reduction (decoration model) (3-9).



FIG. 12. X-ray diffraction pattern of the  $Nb_2O_5$ -promoted 5.0 wt% Rh/SiO<sub>2</sub> catalyst after being calcined in air at 1173 K.

# Effect of Calcination at High Temperatures

The new diffraction peaks (d values: 3.32, 2.53, 1.72) appeared in the XRD pattern when the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalyst was calcined in air at 973 K. In order to make an analysis of this new phase, the catalyst was further calcined in air at 1173 K. As shown in Fig. 12, the other peaks in addition to the three main peaks became clear. A best fit was obtained if we calculated the d spacing values by assuming the tetragonal FeNbO<sub>4</sub> structure (see Table 2). Therefore, it may be considered that the new diffraction peaks correspond to the formation of RhNbO<sub>4</sub> compounds.

There is a positive correlation between the calcination treatment and the extent of

TABLE 2

Observed and Calculated d Spacing Values (Å) for the New Phase in Fig. 12

|                                    |       |       | _     |       |       | -     |       |
|------------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Observed d<br>values               | 3.321 | 2.534 | 2.355 | 1.725 | 1.662 | 1.485 | 1.392 |
| <i>I/I</i> 1                       | 100   | 50    | 22    | 47    | 35    | 15    | 18    |
| h k l                              | 110   | 101   | 200   | 211   | 220   | 310   | 301   |
| Calculated $d$ values <sup>a</sup> | 3.321 | 2.534 | 2.349 | 1.723 | 1.661 | 1.485 | 1.389 |

<sup>*a*</sup> The *d* spacing values were calculated by assuming that the new phase takes the tetragonal structure of FeNbO<sub>4</sub> (from the standard ASTM XRD values). The *a* and *c* values were calculated to be 4.697 and 3.010 Å, respectively.

FIG. 13. A model for the SMSI behavior in the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts.

the Rh-Nb<sub>2</sub>O<sub>5</sub> interaction; i.e., the calcination of the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts in air at 973 K resulted in more severe suppression in the H<sub>2</sub> chemisorption capacity and the ethane hydrogenolysis activity by HTR at 773 K. This result may suggest that the RhNbO<sub>4</sub> compound detected by XRD (or its precursor) plays an important role in the decoration of the Rh surface; the formation of RhNbO4 during the calcination treatment may provide a driving force for a more intimate contact between Rh and  $Nb_2O_5$ . During the calcination process, those niobia in the vicinity of the Rh particles and/or on the SiO<sub>2</sub> surface may migrate toward the Rh particles at the calcination temperature. The amount of the movable niobia may depend on parameters such as calcination temperature, strength of Nb<sub>2</sub>O<sub>5</sub>-SiO<sub>2</sub> interaction, and the total amount of the Nb<sub>2</sub>O<sub>5</sub> promoter.

The TPR results in Figs. 9 and 10 showed that the calcination treatment at the higher temperature leads to the increase in the contribution of the reduction peaks at the higher temperatures (i.e., more strongly interacting phase between Rh and  $Nb_2O_5$ ). This phase may correspond to the RhNbO<sub>4</sub> compound (or the precursor of RhNbO<sub>4</sub>). The TPR results are also consistent with the XRD observation (in Fig. 11) that the RhNbO<sub>4</sub> compound (formed by the calcination at 973 K) was not reduced by LTR at 373 K, but reduced to the Rh metal by HTR at 773 K. It may be noted that a small contribution from the Rh<sub>2</sub>O<sub>3</sub> phase was observed in the XRD pattern in Fig. 11 (No. 1) after the calcination of catalyst B at 973 K. As shown in Fig. 9b, the TPR peak at ca. 430 K may correspond to the reduction of the Rh<sub>2</sub>O<sub>3</sub> phase. However, the calcination

treatment at 1173 K resulted in the formation of a well-defined phase of  $RhNbO_4$ , and almost no peaks of the  $Rh_2O_3$  phase were observed in the XRD pattern in Fig. 12.

### A Model of Rh-Nb<sub>2</sub>O<sub>5</sub> Interaction

In the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh/SiO<sub>2</sub> catalysts used in this study, it was suggested that the Rh surface was partially covered with the  $Nb_2O_5$  promoter even after the  $O_2$  treatment at 673 K followed by LTR at 373 K. Moreover, the degree of the Rh–Nb<sub>2</sub>O<sub>5</sub> interaction increased as the contribution of the reduction peak at the higher-temperature side increased in the TPR spectra (see Figs. 7, 9, and 10). The TPR peak at the highertemperature side was related to the reduction of the RhNbO<sub>4</sub> compound (or its precursor). The  $O_2$  treatment at 673 K may be insufficient to produce the RhNbO<sub>4</sub> phase, since no diffraction peaks of RhNbO<sub>4</sub> were found after this treatment of the catalyst B (Fig. 11). However, it would not exclude the possible formation of the RhNbO<sub>4</sub> precursor (which is undetectable by the XRD technique). From these results, we propose a probable model for the SMSI behavior, as shown in Fig. 13. A precursor of RhNbO<sub>4</sub> (or the surface RhNbO<sub>4</sub> compound) may be produced by the O<sub>2</sub> treatment at 673 K. After LTR, Rh oxide is reduced to the Rh metal, but the surface RhNbO<sub>4</sub> compound remains unreduced. As presented in Fig. 13, an island-like decoration may be considered, based on the assumption that part of the Rh surface is exposed after LTR, since the catalyst after LTR has a hydrogen chemisorption capacity and a high activity of the ethane hydrogenolysis reaction. The surface RhNbO<sub>4</sub> compound is reduced by HTR at 773 K, and the Rh surface may be covered uniformly with Nb oxide species  $(NbO_x)$ , which results in the state of the severely suppressed H<sub>2</sub> chemisorption capacity and catalytic activity (a geometric effect) (3, 4, 20, 21).

The observed results may be explained qualitatively by this model. However, it

should be pointed out that the detailed mechanism in this catalyst system is not yet clear at the present stage. One interesting point is that no exact parallel correlation between the behaviors of the H<sub>2</sub> chemisorption and the ethane hydrogenolysis activity was observed with changing the reduction temperature (see Figs. 1-3, 5, and 6). In most of the Nb<sub>2</sub>O<sub>5</sub>-promoted Rh catalysts, the H/Rh value decreased severely even after the  $H_2$  reduction at 573 K, but the ethane hydrogenolysis activity was not decreased significantly by the H<sub>2</sub> reduction at this intermediate temperature. It may be concluded that the ethane hydrogenolysis activity is severely suppressed when the H/Rh value decreased to almost zero after HTR at 673-773 K. More complicated structural changes and/or electronic interaction might be considered in order to elucidate the detailed mechanism for the above results. Ko et al. have developed a hierarchy consisting of five steps to rank the extent of interaction in Ni/Nb<sub>2</sub>O<sub>5</sub> catalysts for the interpretation of their results by the chemical probes such as CO hydrogenation, ethane hydrogenolysis, and  $H_2$ chemisorption (17, 28). However, the detailed interpretation in the present catalyst system will be the subject of further investigation.

#### ACKNOWLEDGMENTS

One of the authors (Z. Hu) thanks Tianjin University, China. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, Japan.

#### REFERENCES

- 1. Tauster, S. J., Fung, S. C., and Garten, R. L., J. Amer. Chem. Soc. 100, 170 (1978).
- Tauster, S. J., Fung, S. C., Baker, R. T. K., and Hourseley, J. A., Science 211, 1121 (1981).
- 3. Resasco, D. E., and Haller, G. L., J. Catal. 82, 279 (1983).
- Haller, G. L., Henrich, V. E., McMillan, M., Resasco, D. E., Sadeghi, H. R., and Sakellson, S., "Proceedings, 8th International Congress on

Catalysis, Berlin, 1984," Vol. V, p. 135. Dechema, Frankfurt-am-Main, 1984.

- Sadeghi, H. R., and Henrich, V. E., J. Catal. 87, 279 (1984).
- Takatani, S., and Chung, Y. W., J. Catal. 90, 75 (1984).
- 7. Ko, C. S., and Gorte, R. J., J. Catal. 90, 59 (1984).
- Belton, D. N., Sun, Y.-M., and White, J. M., J. Phys. Chem. 88, 5172 (1984).
- Raupp, G. P., and Dumesic, J. A., J. Catal. 95, 587 (1985).
- Ichikawa, M., Fukushima, T., and Shikakura, K., "Proceedings, 8th International Congress on Catalysis, Berlin, 1984," Vol. 2, p. 69. Dechema, Frankfurt-am-Main, 1984.
- Bhasin, M. M., Bartley, W. J., Ellgen, P. C., and Wilson, T. C., J. Catal. 54, 120 (1978).
- Ichikawa, M., and Fukushima, T., J. Phys. Chem. 89, 1564 (1985).
- Pande, N. K., and Bell, A. T., J. Catal. 97, 137 (1986).
- 14. Rieck, J. S., and Bell, A. T., J. Catal. 99, 262 (1986).
- 15. Rieck, J. S., and Bell, A. T., J. Catal. 99, 278 (1986).
- 16. Singh, A. K., Pande, N. K., and Bell, A. T., J. Catal. 94, 422 (1985).
- Ko, E. I., Bafrali, R., Nuhfer, N. T., and Wanger, N. J., J. Catal. 95, 260 (1985).
- McViker, G. B., and Ziemiak, J. J., J. Catal. 95, 473 (1985).
- 19. Lin, Y.-J., Resasco, D. E., and Haller, G. L., J. Chem. Soc. Faraday Trans. 1 83, 2091 (1987).
- Kunimori, K., Doi, Y., Ito, K., and Uchijima, T., J. Chem. Soc. Chem. Commun., 966 (1986).
- Kunimori, K., Ito, K., Iwai, K., and Uchijima, T., Chem. Lett., 573 (1986).
- Kunimori, K., Hu, Z., Ito, K., Maeda, A., Nakamura, H., and Uchijima, T., Shokubai (Catalyst)
  29, 106 (1987); "59th CATSJ Meeting Abstracts," No. A16. 1987.
- Murakami, Y., *in* "Preparation of Catalysts III" (G. Poncelet, P. Grange, and P. A. Jacobs, Eds.), p. 775. Elsevier, Amsterdam, 1983; *Shokubai* (*Catalyst*) 26, 280 (1984).
- Kunimori, K., Ikeda, Y., Soma, M., and Uchijima, T., J. Catal. 79, 185 (1983).
- Haller, G. L., Resasco, D. E., and Rouco, A. J., Faraday Discuss. Chem. Soc. 72, 109 (1981).
- Kunimori, K., Hashimoto, T., Ito, S., and Uchijima, T., Denki Kagaku 54, 868 (1986).
- Resasco, D. E., and Haller, G. L., in "Studies in Surface and Catalysis" (B. Imelik, et al., Eds.), Vol. 11, p. 105. Elsevier, Amsterdam, 1982.
- Ko, E. I., Hupp, J. M., and Wanger, N. J., J. Catal. 86, 315 (1984).